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FOREWORD

This final technical report was prepared as part of the contract deliverables under the
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Force Project Engineers/Technical Monitors at various stages of the program.

The present volume (Volume 3) outlines the research effort performed under Task 002:
High “G” Heat Transfer Study covering the spin table facility development at APPD’s Thermal
Laboratory and steady-state performance tests conducted on a flexible heat pipe. The other

volumes of the final report are:

Volume 1: Electronics Cooling (Task 001)
Volume 2: Rotating Heat Pipe (Task 004)

The work described here was performed entirely on-site at the Thermal Laboratory
(WL/POOS) by UES, Inc., Dayton, Ohio with Dr. R. Ponnappan as the Program Manager.
Messrs. J. Tennant (UES), M.D. Ryan (UES) and D. Reinmuller (WL) provided the technical
support. UES’ Materials and Processes Division, together with the corporate publication group,
provided the administrative and documentation support. The author sincerely appreciates the

services by Dr. Qun He, UES, Inc., in preparing this document.
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1.0 INTRODUCTION

1.1 BACKGROUND HISTORY

Heat pipes have a long history of dependable operation on the ground and in spacecraft
applications where external forces are minimal.! In recent years, potential applications have
been identified where heat pipes are subjected to vibration and acceleration body forces.
Examples include the Navy’s flexible heat pipe for aircraft actuator cooling 2, leading edge
cooling of hypersonic airplanes and high power electronics cooling for the more electric airplane.
High performance aircraft use sophisticated electronic equipment onboard. These electronic
packages contain state-of-the-art high density circuit boards. Also, high power electro-
mechanical actuators are used to activate the control surfaces of the aircraft. In order to maintain
a proper thermal environment for these packages, some form of thermal management devices is
built into the support structure. Future designs may use heat transfer systems such as heat pipes,
two-phase pumped loop, immersion cooling, flow boiling devices, etc. It is important for the
designer of the thermal systems to make sure that not only their thermal performance is met on
the ground, but also during flight and maneuvers as well.> Aircraft electronic packages may
undergo acceleration levels of 5 G (up to 7.3 G for short duration) with the vibration frequency
ranging from 3 to 1000 Hz. Figure 1 shows a typical plot of acceleration vs. time profile for an
F15 aircraft maneuver which forms the basis for simulation on a centrifuge table.* Table 1
shows the typical range of acceleration and frequency for various airborne and space vehicles.3~
However, these acceleration levels at high frequency range of vibration should not be confused

with the low frequency acceleration levels of aircraft maneuvering shown in Figure 1.

The fundamental concern with the acceptance of a heat pipe for these applications is the
understanding of this device under the induced external body forces. These forces are generated
from a combination of random vibration and system acceleration. The forces may or may not be
cyclic and occur in the adverse conditions with sufficient magnitude that they may easily
deprime the wick structure and force restart scenarios. This problem is further complicated by
the fact that the subsequent disturbance could occur prior to a completed restart. In order to
evaluate these situations, a study has been initiated to investigate the heat pipe operation in an

accelerating environment.
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Air Combat Maneuvering Instrumentation System and the ACMI Data Plot
Package. This Engagement Saw a Peak G Load of 7.3 G and a Maximum
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Figure 1.




Table 1. Vibration and Acceleration Levels of Electronic Equipment for Aircraft,
Helicopter, and Aerospace Vehicles

Description Vibration Frequency Acceleration
Spectrum
ATRCRAFT?
Nominal range 3-1000 Hz 1-5 g(peak)
Highest Acceleration 100 - 400 Hz 5 g (in vertical direction)
Lowest Acceleration 100 - 400 Hz 1 g (in longitudinal direction)
HELICOPTERS?
Nominal range 3-500Hz 05-4¢g
Higher Acceleration 500 Hz 4 g (in vertical direction)
(NOTE: Very large
displacements at low
frequency: 5 mm at 10 Hz)
MISSILES?
Nominal range 3-5000 Hz 5-30g
Highest acceleration >1000 Hz 30g
SPACE SHUTTLE?
Lateral Axis 20-2000 Hz +6 g (each axis)
Longitudinal Axis 20 - 2000 Hz +10g

Note: These data are provided as a reference only. The influence of these high frequency
vibration on heat transfer mechanisms would constitute an entirely different area of
research and should not be interpreted as the low frequency, high-g maneuvering of
aircraft that is addressed in this report.

Richardson et al. conducted tests on a stainless steel sinter wick heat pipe with simple

harmonic vibration loads of 0-580 Hz and 0-12 G in the longitudinal direction and found that the

heat transfer capacity dropped as the induced acceleration was increased.® Semena and

Nikolaenko found that vibration loads (5-4000 Hz and 0.12-15 G) exert a significant effect on the

thermal resistance and the transport capacity.” Hou and Wen analyzed the performance of a

grooved heat pipe mounted on a spinning satellite.® They showed that an abrupt increase in heat

pipe AT resulted at a threshold spin rate indicative of the evaporator dryout. Kiseev et al.

investigated the performance of a heat pipe with separate liquid and vapor channels subjected to

steady-state acceleration forces of 1-10 G.° They found that the heat pipe operated with a

reduced maximum heat flux associated with a large thermal resistance when subjected to adverse

acceleration forces.




1.2 SCOPE OF THE PRESENT STUDY

The scope of the present research was to:

o Analyze the effects of acceleration on the steady-state performance of heat pipes
in order to understand the potential limitations and benefits of using such capillary

devices under external body force environment;

o Design and develop a spin table test facility with adequate instrumentation and

control; and

L Test a flexible heat pipe for performance under steady state transverse

acceleration conditions and compare with theoretical predictions.

2.0 ANALYSIS

21  APPLICATION OF G-LOADS

2.1.1 Physical Orientation

The first step toward understanding the behavior of heat pipes under body force effects is
to mount a test heat pipe on a horizontal centrifuge table at various orientations and test for
performance. A few of the representative mounting arrangements are illustrated in Figure 2 and
the favorable and unfavorable conditions for the heat pipe performance are indicated. The best
and worst cases of available pumping head occurs in radial mounting, depending upon the
relative positions of evaporator and condenser. In this case, under steady-state spin conditions,
the induced acceleration is purely longitudinal in the heat pipe. The body forces developed due
to this induced longitudinal acceleration will be in direct opposition with the surface tension
forces in the wick for the case of evaporator end kept near the center of the table and vice versa
(Figure 2, case I). On the other hand, the induced body forces are mostly in the transverse

direction of the heat pipe for the cases of circumferential mounting as shown in cases II and III in

4
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Figure 2. Straight heat pipes and flexible heat pipes with straight evaporator and condenser
lengths cannot conform to a uniform radius of curvature and hence they will undergo nonuniform

acceleration loads along their length.

The radial or centrifugal acceleration experienced by an object mounted at a radius, r, on

a spin table rotating at a constant angular speed w is given as

a = Wr = [2nN)2r 1

r 60

where N is the rotational speed in rpm.

If expressed in ratio of acceleration due to gravity “g” (= 9.81 m/s?),
a, = 1.1179x107 N’ in G’s ()

This relation is graphically illustrated in Figure 3.

The tangential acceleration, a, = r do 1s not important for steady state analysis. Both induced
tangential and vertical acceleration effects are not considered in this study for simplicity.
Acceleration loads up to 10 G are easily created using a nominal spin rate of 100 rpm and radial
arm of 1 m as indicated in Figure 3. By controlling the speed of the drive motor, various G-load
profiles can be obtained. A typical simulated air combat maneuvering profile is shown in Figure

4 adapted from Reference 10.

2.1.2 Flexible Heat Pipe

The candidate heat pipe chosen for analysis and test is a flexible copper-water heat pipe
fabricated by Thermacore for the U.S. Navy.? A detailed description and illustrations are
included in Section 4.0, “Experimental Work.” Additional details of the wicks and capillary

performance limits of this heat pipe are given in the Appendix.

Figure 5 illustrates the top view of the circumferential mounting on a horizontal spin
table. The acceleration component vectors and the adiabatic section arterial wick segment are

shown in Figure 6.

[3
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SPIN TABLE
TOP PLATE

FLEXIBLE
HEAT PIPE

BALANCE WEIGHTS
OR INSTRUMENTS AS
BALANCE WEIGHTS

,_.___._-_
I

tri |

ROTATIONAL
SPEED

N(RPM)

E - EVAPORATOR PAD
C - CONDENSER PAD
r - RADIAL ARM LENGTH

Figure 5. Top View of the Spin Table with Circumferentially Mounted Flexible Heat Pipe.




YO\ CONDENSOR .
PAD EVAPORATOR
PAD

EXCESS FLUID
PUDDLE

EFFECTIVE AREA OF
ARTERY FLUID TRANSPORT

Figure 6. Acceleration Components Nomenclature.

2.2 EFFECT OF G-LOAD ON CAPILLARY LIMIT AND BOND NUMBER

The transport capability of a heat pipe is dependent on the maximum effective pumping
pressure of the wick available at the evaporator. For steady-state operation of an arterial wick
heat pipe in 1 G field and inclined at an angle Y to the horizontal, transport capacity is as given

in Eq. (3) obtained from Chi with usual notations.!

L
f(Fﬂ + Fv)de =20, pedcosy + pgLsiny 3)
r

c

For a heat pipe in an accelerating environment, Eq. (3) has to be modified in order to account for

the body forces generated by the resultant acceleration (ag). The modified equation is

10




L L
f(Fa + Fv)de = %(—J- + pagdcosy + pa Lsiny + fpﬂatdx 4

¢ 0

The last term on the right hand side of Eq. (4) is zero for the circumferential mounting steady-
state conditions. Also, the term sin ¥ = O for horizontal mounting. The pressure loss or gain due
to the induced acceleration depends on the magnitude and direction of ag which in turn depends
on the mounting and rotation details. It may be noted here that essentially Eq. (4) simplifies to a
situation similar to that of Eq. (3) where g is replaced with ag. For a rigorous treatment of this
study, Eq. (3) should be considered with components of the induced acceleration in all directions

together with g.

Theoretical capillary transport limit for the flexible copper-water heat pipe (described in
the Appendix) has been estimated using Eq. (4) for ag = 1G, 4G and 10G and plotted along with
experimental results. The effective capillary radius (r,) of the artery cable wick was calculated

based on the adverse tilt test results and using Eq. (5).

_ 20cos0
pgH

®)

c

The extrapolated wicking height (H) was 24.8 cm and the corresponding r, = 0.554x10% m
whereas the measured 1, = 3.06x10 m. Both, the low and high values, were used in

calculations.

2.2.1 Transverse Load (Circumferential Mounting)

It is assumed that the flexible heat pipe was mounted horizontally on the spin table with
its longitudinal axis along a circular arc at a radius of 1.0 m from the center of the table as shown
in Figure 5. Under steady spin rate, the radial acceleration experienced by the fluid in the artery
cable is uniform along its length. The ability of the artery cable to retain fluid can be determined
by a pressure balance involving the surface tension force in the wick and the radial gravity (in-
duced) force. The condition in Eq. (6) must be satisfied in order to keep the artery cable primed

under radial acceleration. Vertical acceleration a, is assumed to be zero, and hence, ag=a,.

11




Pressure exerted on the Capillary pressure available

©)

fluid in the wick due < in the wick due to
lsurface tension

to radial gravity force

For an artery cable wick of length L, diameter d, porosity € and capillary pore radius r_, and

assuming uniform cross section and wick porosity, Eq. (6) can be written as

7d 2 Le(Pg“Pv)a . 20cos

4 . Ld " r

c

Simplifying,

ar(pc—pv)drc . 8cosO ™

g e

The left-hand side of Eq. (7) can be recognized as the Bond number for this case.

a, (pﬂ B pv)drc

That is, Bo, =
o

For the wick under consideration, € = 0.4125 and assuming perfect wetting (0 = 0), Eq. (7)

becomes

Bo, < 6.173 )

Bond number for the present wick-fluid system (copper-water), can be determined as a function
of the heat pipe operating temperature at various radial G-loads. Figure 7 illustrates that the
flexible heat pipe can be operated safely at 10 G in the circumferential mounting. As the Bond
number cannot be experimentally determined, the regions of high-G tests performed on the
present heat pipe for two cases of r, values and a=10.1 G are marked in this figure.
Uncertainties in determining the wick parameters (r,,0,€) will directly affect the Bond number

which will in turn influence the limit on radial G-load. In addition, liquid inventory, puddling

12
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re =554 pm | r. =306 um
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Figure 7. Effect of Radial Acceleration on Heat Pipe Performance for Circumferential

Mounting (Bond Number vs Temperature).

Note: The open and closed circle data points on the graph indicate the maximum G-level of
tests actually conducted without depriming the artery.
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effects and arterial depriming due to partial saturation may all affect the transport limit under
G-load.

2.2.2 Longitudinal Load (Radial Mounting)

The following assumptions and conditions are made for analyzing the radial mounting of

the heat pipe on the spin table:

] Planar mounting on the spin table along a radial line (Figure 8)

] Steady-state of spin (w = constant)

o Heat pipe has uniform cross section

° Wick porosity is uniform

L Evaporator end is nearer to the center of the spin table (unfavorable wicking
condition)

The condition for the working fluid to prime the wick segment dx can be expressed as

Xz

20cos0
f (pe-py)ew’xdx < :OS ®
2 2
X, 7% 20cosH
or (pg ”PV)GOJZ ( ) < -
(10)
_ 2 L
. (Pg pv)w (Xl +;) L 2cosf
rearranging, <
o €
14




Vertical axis of spin

E =EVAPORATOR END o = ANGULAR SPEED
C = CONDENSER END a,= RADIAL ACCELERATION AT x
L =HEAT PIPE LENGTH

Figure 8. Radial Mounting of a Straight Pipe on the Spin Table.
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A Bond number can be defined here using the average centrifugal acceleration (radial) term,

: - ra

a = wz( X, + —Ii) such that Bo, = (ﬁg—ﬁ')L—';i (1§))
2 o]

For the wick under consideration, € = 0.4125 and for complete wetting (6 = 0), above equation

becomes

Bo, < 4.848 (12)

Bond number (Bo,) for the flexible heat pipe (L = 0.762 m) mounted radially on the spin table
with x; = 0.25 m and x, = 1.012 m is calculated based on Eq. (11) as a function of the pipe
operating temperature for three values of radial G’s, a,= 0.8 G, 1.0 G and 1.6 G. The results are
plotted as shown in Figure 9 and it is clear that the heat pipe artery will be deprimed if the
operating conditions exceed a, =1 G and 80°C. It should be noted here that the mounting
orientation is the most unfavorable wicking condition which must be avoided in practical
situations of steady radial acceleration conditions. However, transient radial acceleration loads
may have a completely different priming or depriming behavior of the wick and that will require

further study.

3.0 DESIGN AND DEVELOPMENT OF A SPIN TABLE TEST FACILITY
3.1 DESIGN REQUIREMENTS

Air Force anticipates a number of thermal management related problems in connection
with the more-electric aircraft components development. These include auxiliary power units
(APU), starter/generators, brakes, flight control surface actuators, etc. Heat pipe and phase

change material (PCM) thermal control methods may be applied in these devices.

One immediate requirement which had to be addressed was to test the flexible heat pipe
developed by the Navy and Thermacore under an SBIR program for cooling the actuator of an

F/A-18. Before a new heat pipe device can be installed on an aircraft system, simulated ground
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tests have to be performed. In this regard, a spin table test setup was necessary and the

features/capabilities required were as follows:

o Style: Horizontal table with forward/reverse rotations;

multichannel signal and power slip rings; coolant feed-

through
° G-load: 10 Gs maximum
° Acceleration rate: 3 G/sec spin up

2 G/sec spin down

] Test item weight: 50 Ib.

An old surplus facility donated by the Air Force Aerospace Medicine Division was refurbished
and instrumented for this purpose. Presently, this test facility is functional at the H-Bay Thermal
Laboratory in Building B71.

3.2 SPINTABLE TEST FACILITY DESCRIPTION

The setup consists of a 2.4 m diameter table mounted on a vertical shaft and thrust
bearing assembly. A 20 HP dc motor drives the table through a reduction gear box with gear
ratio 8.75:1. The table can be spun at any speed in the range 0-100 rpm. A triaxial
accelerometer mounted on the table measures the accelerations in radial, tangential and vertical
directions. Electrical power to heat pipe is fed through disc shaped rings and carbon brushes
mounted at the bottom of the table. Instrumentation signals from thermocouples and
accelerometers are taken out through an instrumentation quality 40-channel slip ring assembly
mounted on the vertical shaft above the table. A four-port hydraulic rotary coupler services the
coolant to the heat pipe. A constant temperature bath circulates 50/50 by mass ethylene glycol-
water mixture through a flowmeter to the heat pipe condenser. Thermocouple signal conditions
are kept on the spin table itself in order to reduce electrical noise in transmission and slip ring
motion. Counterbalance weights are used on the table to minimize dynamic imbalance of the
table. The heat pipe is insulated thoroughly to ensure accurate calorimetric measurements. Figure

10 shows the major components of the spin table and overall dimension and weight details.
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3.2.1 Drive System

The following are the motor drive and control specifications:

Motor: 20 HP, 1150 RPM base DC shunt wound motor
- 240V armature
- Frame 2812AT
- Blower and filter
- 240V field STD
- Drip-proof guarded
- GE Kinematic motor
Motor Control: CMC PM12 Regen package: -
- 4 quad system
- AC line inductors - SP1-101
- Regen to stop
- AC line circuit breaker
- Speed and load meters
- Fused blower motor starter
- NEMA 12 enclosure
- Interlocked thru the door circuit breaker
- Remote enclosure NEMA 13
- Armature voltage feedback 2%
- AC input 22 amps @ 460/3/60
- Arm, DC amps 75 @ 240V
- Field amps 5 max @ 240V
- “A” module PM12-A-020AP
- NEMA 12 ventilated enclosure - 42"Hx30"Wx12"D
- Wall mounted

- Armature inductor for using old motor

20




Operator control station for remote location NEMA 12, start/stop speed pot, “power on” light,
“run” light, isolation transformer 460V/3 ph/60 Hz primary, 1-57 tap above or below spec.,
230V/3 ph/60 Hz secondary.

3.2.2 Slip Ring Assembly

The spin table has two slip ring assemblies. One is disc shaped rings with sturdy carbon
brushes for power feeding up to 5 amp load. Six such concentric rings and pickups are mounted
on the bottom of the table. The other slip ring is a 42 channel instrumentation type system with
through mounting over a shaft. This consists of a cylindrical grooved type ring and two brush
blocks with 21 channels each, located outside the cylinder. Each channel has two contactors.

Figure 11 shows the details of this slip ring along with a rotary hydraulic coupling.

3.2.3 Data Acquisition System

A summary of the details of the instrumentation and data acquisition system is given

below.

] Keithley 575 with AIM2 card and data bus to work over 150 ft; RS-422 port

compatible.

° PC with RS-422 or IEEE port
VGA graphics, hard disk 40 MB, 1 MB RAM

] Menu-driven software
Real time
Foreground/background application, multiplexing
Control D/A outputs
Quick Basic programming
500-1000 Hz scan rate
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L Input »
16 thermocouples through signal conditioners 0-5 VDC
3 accelerometer (triaxial) channels +7.5 VDC
1 tachometer 0-5 VDC
1 flowmeter 0-5 VDC
2 AC voltage through signal conditioners 0-10 VDC

° Output .
1 D/A signal for motor control 0-10 VDC, 4-20 mA

] Signal Conditioners
16 self-linearizing thermocouple input modules +0.5°C accuracy; mother board

for signal conditioners

o Sensors

Thermocouples (K-types), three axis accelerometer (0-15G), flowmeter (0-2 gpm)

A schematic diagram of the integrated spin table with all the controls and instrumentation
systems is shown in Figure 12. For safety reasons, the spin table and the control station are
separated. A closed circuit television camera and monitor system is used for visual observation

and control.
4.0 EXPERIMENTAL WORK
4.1 HEAT PIPE TEST HARDWARE

The candidate test heat pipe used in this effort was designed and fabricated by
Thermacore, Inc. This pipe was one of the four flexible heat pipe cold plates (FHPCP) built to
provide cooling for either the electronic package mounted on an aileron actuator or a remote

terminal electronics package for a trailing edge flap actuator aboard the Navy F/A-18. A detailed
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description of the design and fabrication aspects can be found in Ref. 2 and the static transient
thermal performance results for step changes in heat input can be obtained from Ref. 11.
Additional data on transient heat flux effects and body force effects can be seen in Ref. 12.

Table 2 provides the summary of design details for this heat pipe.

A perspective view of the flexible heat pipe showing the evaporator and condenser pads
and a cut away view of the artery cable in the adiabatic section is illustrated in Figure 13. The
physical dimensions and the thermocouple locations are provided in Figure 14. The condenser
pad was cooled by a water-ethylene glycol mixture circulated cold shoe. A constant temperature
bath and calibrated rotameter aided calorimetric measurements. The evaporator was heated by
MINCO foil heater which was fed by a controllable power supply. Photographic views of the

heat pipe mounted on the spin table in circumferential orientation are given in Figures 15(a)

and (b).
4.2 STEADY-STATE PERFORMANCE TEST PROCEDURE

Steady-state performance tests were done on the heat pipe at various G-loads (transverse
to the heat pipe axis) by maintaining the appropriate rotational speed for the table. The resultant
acceleration ap was obtained as a, = ‘/;,E::: where a, = 1G due to gravitational acceleration.
Performance tests corresponding to static conditions were done at very low speed (=10 rpm) in
order not to damage the slip ring contacts. Typically at each G-load, heat input to the evaporator
(Q;p) was raised in steps of 25 W initially and then in 5 W steps when evaporator dryout was
approached. At each power setting, the temperature profile stabilized within 15-20 minutes.
Test data included outputs from 15 thermocouples, triaxial accelerometer, power input and
coolant flow rate. Data were scanned every minute and stored in disc files for subsequent
processing. Heat actually transported through the heat pipe was obtained by calorimetric
measurements. By steady state experimental measurements, it was determined that the trans-
ported power, Q,, was 83.4% of the input power, Q;,. In all test runs, the condenser end was in

the leading position. Table spin direction was not a contributing factor for steady state spin tests.

Reference 13 summarizes the steady state performance test procedure and test results.
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Table 2. Design Details of the Flexible Heat Pipe

GENERAL
Heat Pipe Length
Design Power
Adverse Elevation at Design Power
AT at Design Power
Working Fluid
Working Fluid Charge
Wall/Wick Materials
Total Weight

EVAPORATOR
Cold Plate Section
Envelope
Capillary Wick Material

POWDER (SINTER)
Pore Radius
Permeability

FLEXIBLE ARTERY CABLE
Type
Vendor
Construction
Material
Pore Radius
Permeability

BELLOWS
Length
Diameter
Vendor
Part Number
Rated Pressure

CONDENSER
Wick Material
Groove Pitch
Groove Depth
Groove Angle
Tube Material
Tube Diameter
Tube Wall Thickness
Mounting Plate

73.7 cm
59 Watts
7.6 cm
2.6°C
Water
25cc
Copper
0.95kg

10.2 cm x 12.7 cm x 0.48 cm Copper
OFHC Waveguide Tubing
+200/-325 Sintered Copper (1.01
mm thick)

15.9 mm (expected); 55.4 pm (measured)*
1.47 x 108 cm?

Braided Cable

New England Electric Wire Co.
24x7%36 over 7x37/30

OFHC Copper

306 um

5.77x10°6 cm?

45.7 cm (162 corrugations)
1.3 cmid.

Hydroflex Corp.
HFAN-06-18-601-601-B1-CP
3.62x10° kPa

Spiral Grooves

60 grooves per 2.54 cm
0.051 cm

30° included

OFHC Copper

1.59 cm

0.102 cm

32cmx 1.52cm % 0.48 cm

*Based on Thermacore’s wicking height measurement of 9.75 in.
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5.0 RESULTS AND DISCUSSION

5.1 PERFORMANCE SUMMARY

The temperature profiles of evaporator pad, adiabatic section and condenser pad were
plotted at each incremental power input level during the entire test duration ranging from 3-4
hours each. Figures 16, 17, 18 and 19 show these results for ap =1.01, 2.35, 4.35 and 10.10 G,
respectively. A sudden rise in temperature of the evaporator pad at a threshold power level is
distinctively noticeable in each of these cases. This point (where the evaporator end temperature
exceeds that of the evaporator near the adiabatic section) marks a partial dryout of the evaporator
wick and cautions against further increase of power input. It is also clear that this threshold
power level progressively decreased with increase in G-load. Another important observation
from these graphs is that at Q, = 63 W, the evaporator operated at 36 + 1%°C for all G-loads
whereas the condenser temperature decreased with increase in G-load. The average temperatures
of the heat pipe also decreased with increase in G-load. This is happening due to reduction in
input power necessary for operating the pipe without evaporator dryout. These graphs clearly
establish the safe operating limits for various G-loads. The cool down portions of those graphs
are more or less the reverse of the heating mode. The repriming point of the evaporator wick and

a slight hysterisis effect are clear.
5.2 AXIAL TEMPERATURE PROFILE

In order to illustrate the temperature profile along the length of the heat pipe, the test data

at the near-dryout points (where the evaporator pad temperatures cross-over) from Figures 16-19

are retrieved and plotted as shown in Figure 20. The pipe operated with lower overall AT at 1.01
"and 10.11 G than at intermediate G-loads. The adiabatic operating temperature dropped as a

consequence of the drop in transported power which was triggered by increase in G.
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5.3 HEAT TRANSPORT RATE VS: TEMPERATURE DIFFERENCE

The transported power and temperature differences along the length of heat pipe are
plotted as a function of transverse acceleration in Figure 21. Transported power dropped to
lower than 50% of static performance. The design capacity of 60 W is still transportable at 10 G
transverse. The temperature profile smoothing effect due to increase in G is apparent from the
AT plots in Figure 21. Evaporator to adiabatic drop (AT, ) steadily declined while adiabatic to
condenser drop (AT () increased at first and then dropped. The net effect is that the overall pipe
AT decreased with G. The condenser efficiency is adversely affected at intermediate G loads due
to puddling. Puddling of the condenser with excess fluid (and also the fluid forced out of the
artery wick) occurs in the present mounting arrangement of the flexible heat pipe on the spin
table. The straight sections of the evaporator and condenser pads stay off the circular mounting
track and cause higher radial G at the ends. Temporary plugging of the condenser end shows high
ATg4 up to 3 G. Further increase in G (3-10 G) forces the excess fluid to recede into the con-

volutions of the bellows thereby relieves the fluid plugging of the condenser and reduces AT .

Various experimental operating points are plotted to show the heat transport capacity as a

function of temperature in Figure 22. A theoretical capillary limit curve based on static condition

pumping limit (r, = 0.5544x10™* m) is also shown for comparison. It appears that actual
performance is better than that of theoretical at G-levels lower than 4.35. But at G-levels higher
than 4.35 the actual performance is worse than the theoretical values. This anamoly may be due
to the omission of g (gravitational acceleration) in calculating ap in Eq. (4). The correct
expression for ap should be a, = ar2 +g2. Due to uncertainties in determining physical
parameters such as 0, €, r, and K, theoretical prediction of heat transport capacity may not be

precise. Moreover, the validity of these wick parameters for high-G situations is unknown.

6.0 CONCLUSIONS

A comprehensive spin table test facility has been developed for testing heat pipes and

other heat transfer experiments under high G loads.
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A flexible copper-water heat pipe was instrumented and successfully performance tested
on this spin table up to 98.1 m/s? acceleratiofl load in the transverse direction to the heat pipe
axis under steady-state conditions. The circumferential mounting orientation was based on the
flight test acceleration loadings of the aircraft. Transport capacity dropped from 138 W for near-
static condition to 60 W for 10 G condition. Overall temperature difference of the pipe at safe
operating power range was more or less constant (=11°C) up to 4 G and decreased to 8°C for
4-10 G. The decrease in AT at high G loads is due to even-distribution of fluid along the length
of the wick. The bond number limit set for artery priming was not exceeded even at 10 G and
assuming conservative capillary radius for the wick. Tests were not conducted with radial
mounting orientation of the heat pipe for obvious reasons this orientation would simulate which
are drastically favorable or unfavorable priming conditions. However, in the interest of

verifying the analytical estimates, these tests may be performed.
This spin table and the instrumentation system are fully operational and form a versatile

test facility for simulating G-loads of the military aircraft. It is expected that this facility would

be utilized for a variety of heat transfer and thermal management research studies in the future.
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APPENDIX

DESIGN AND PERFORMANCE DETAILS OF THE FLEXIBLE HEAT PIPE

[Note: The nomenclature used here is as described in the text by S.W. Chi, Ref. 1]
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Al WICKING HEIGHTS OF THE FLEXIBLE HEAT PIPE FOR WATER

This heat pipe uses sintered copper powder wick for the evaporator and flexible braided
copper cable for artery wick. In order to determine the capillary pumping capacity of these
wicks, capillary heights are calculated based on the wick materials data supplied by the
fabricator. Table A-1 shows these results. According to the adverse tilt test on this pipe by
Thermacore, the extrapolated OW data at 60°C is 9.75 inches.

A.2 CAPILLARY LIMITS AND THE EFFECT OF “G”

Capillary pumping limits for this heat pipe are calculated both ways treating the sinter
wick and the artery wick separately as the pumping wick for obtaining the maximum and
minimum transport capacities. Table A-2 provides these results and the transport capacities are
plotted in Figure A-1 and Figure A-2. Figure A-2 also shows the drop in capillary limit due to

centrifugal acceleration which is calculated as follows:
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Table A-1. Wicking Heights of Flexible Heat Pipe Wicks for Water

Temperature Wicking Height, cm
°C Evaporator Wick Cable Artery Wick
(Sinter Copper)
r, =1.59x10° m r,=3.06x10%m [ 1 =0554x10%m
20 95.05 4.93 27.23
60 86.35 4.49 24.80
100 78.83 4.09 22.59
127 72.92 3.78 20.88
160 65.73 3.41 18.84
200 57.54 2.99 16.51
254 46.71 243 13.41
20,
applicable equation: pgH = — cos0O
T
where, r. = 1.59x107° m (sinter copper)

3.06x10™* m (cable artery; measured)

]
1}

0.554x107* m (cable artery; based on adverse

-t
[}

tilt test results supplied by Thermacore

0 = contact angle; assumed zero
H = wicking height
q = gravitational constant

P, O, = properties of water
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Heat Transport Rate Q.,,, (W)
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CAPILLARY TRANSPORT LIMIT
IF EVAPORATOR SINTER IS
THE PUMPING WICK
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Figure A-1. Capillary Limit (Maximum)
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180

CAPILLARY TRANSPORT LIMIT IF
ARTERY CABLE IS THE PUMPING WICK

160 -
140
g 120 7
g - 0.028-0.113G
(e l - . (N=10rpm)
.3 100 - / AN
4 J/ N
£ N
2 ] /
@ 801 N
s 1 AN
s \
% 60 1 J—— 0.063-0.255 G \
| / - —~ \(N.- 15 rpm)
7 N
A N\
40 - / 0.084-0.339 G \
] / — - .@= 17.3 rpm) N
\
- N
20 1 4 A RN N
: N N
0 - D S ‘
0 50 100 150 200 250 300
Temperature (°C)
Figure A-2.  Effect of G on Capillary Limit for Radial Mounting of Flexible Heat Pipe with

X;=025m X, =1.012m.
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Effect of Radial G on Capillary Limit: Pressure exerted on the fluid element due to
centrifugal acceleration, X, = 1.012 m; X; = 0.25 m.

X,
Po, = fpamzxdx
Xl
2 2 2 2
_ p(02 (Xz —XI) _ 27N |2 (Xz _Xl)
! 2 "\ 60 2
- 2
or P., = 0.0052728 pN

em Pca Poum —API “Pe,

Capillary limit with G-load} Q,, = -
FﬂLeff FQL eff

Using the table of data calculated for static case, Qc,, values are obtained for N = 10, 15, and

17.3 rpm as given in Table A-3.

Table A-3. Drop in Capillary Limit due to Centrifugal Acceleration for Radial Mounting

Temperature Qcas [W] Qcm [W]

°C 10 rpm 15 tpm 17.3 ipm Static
20 427 29.3 213 535

60 74.8 48.1 322 96.2

100 100.8 59.9 35.5 133.6
127 106.9 58.7 30.0 1450
160 106.7 512 18.3 151.0
200 90.9 332 ; 137.0
254 61.8 6.7 - 106.0

The Q_, values in the table are plotted in Figure A-2.
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NOMENCLATURE

a acceleration, m/s?

a, radial acceleration, m/s?

ag transverse acceleration ‘/a,2 + ay2 , m/s?
a tangential acceleration, m/s

a, Vertical acceleration, m/s2

Bo, Bond number for circumferential mounting
Bo, Bond number for radial mounting

d diameter of artery cable, m

F, liquid friction factor, N/m? per Wm

F, vapor friction factor, N/m? per Wm

g gravitational constant, m/s?

G induced acceleration divided by “g”, ND
K permeability of wick, m?

L length of heat pipe, m

Q, heat transport, W

r radius, m

I, capillary pore radius, m

T temperature, °C

AT temperature difference, °C

Greek Symbols

€ wick porosity

0 wetting angle

Py liquid density, kg/m>

Py vapor density, kg/m>

o surface tension, N/m

® angular speed, rad/s

P heat pipe inclination with respect to horizontal plane
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NOMENCLATURE (CONT’D.)

Subscripts

c
AC
EA

condenser
adiabatic to condenser

evaporator to adiabatic
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